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Overview
• Windows Application written in C#
• Software product for parsing and analyzing 

ARINC 429 data
• Interactive graphs to analyze data
• Export data into multiple formats
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Problem Statement
• To create a program to parse a .csv log file from 

the center cluster of a C-130 Airplane and show 
the data in a user-friendly format.
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Conceptual Sketch
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Functional Requirements
• Windows compatible executable file
• No internet connection necessary
• Capability to create user defined graphs, charts, and tables
• Convert the ASCII data into ARINC-429
• Parse the input file into selectable data fields 
• Report anomalies and provide quick access to 

visualizations 
• Export parsed data to either .csv or .xls 
• Allow playback of trend data once imported 
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Non-Functional Requirements
• Parsing needs to run quickly, with a worst case of 10 minutes 
• Accept any .csv and .xls files as input
• Recognize if the .csv input file is valid and provide a notification 

on failure
• Provide data field names for predefined data as per import data
• Capability for user defined data field names
• Allow filtering what’s included in the data set export
• Playback sequences the data points at 1 Hz update rate
• Allow a graphical depiction of the EIDS dials during playback
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• Runtime - Quickly parse data
• Implementation

• Windows - No other port planned
• Dynamic parsing capabilities

Technical Considerations
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What Makes This Project Unique?
• Existing Collins Product:

• MATLAB - Takes hours to parse data files
• Not used because of runtime

• Our Product:
• C# - Built from bottom-up
• Efficient runtime
• Graphing capabilities
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Risks and Mitigation
• Feature Creep

• Timeboxing
• Prioritization of Requirements

• Inaccurate Data Specification
• No Test Oracle
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Cost Estimate
• No Budget, but Time is Money
• Create data parser in 1 semester
• Create front end component in 1 semester

• Agile development practices – will keep adding 
features through entire semester
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Project Milestones
• Parser Prototype (Nov ‘19)
• LiveCharts Implementation (Feb ‘20)
• WPF Application (Mar ‘20)
• Data Parser (Mar ‘20)
• Data Exporter (Apr ‘20)
• Integration (Apr ‘20)
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Design
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• Architecture: 
Model View Viewmodel



Functional Decomposition
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Technology Platforms Used
• Language -  C#
• .NET Framework 4.7.2
• Library - LiveCharts for graphing UI
• WPF - Platform for Windows Desktop apps
• IDE - Visual Studio
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Test Plan
• Test-as-you-go strategy
• Regression testing on new features
• Sections:

• GUI data-handling and UI
• Parsing capability
• Exporting functions
• Example data with LiveCharts
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Prototype Implementation
• Data Parser from spec
• Data Exporter to selected format
• WPF Application
• Interactive Graphing
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Engineering Standards & Design Practices
• IEEE 1008-1987 Standard for Software Unit Testing
• Principle of Least Surprise/Astonishment

• Naming conventions, WorkFlow.
• Principle of Least Knowledge

• Modularity & minimizing dependencies
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Team Contributions
Zak: Communication Lead
Will: Meeting Facilitator
Thomas: UI/UX Architect
Ryan: Quality Assurance engineer
John: Scrum master
Jamie: Tech Owner
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Future Prospects
• Extend exporting capabilities
• Create User Guide
• Hand-off source code & executable
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