
Engine Data Analysis Tool
sdmay20-06

Zachary Frisvold, Will Sartin, Thomas Haddy, John
Powen, Ryan Radomski, Jamie Raught

Team Site: http://sdmay20-06.sd.ece.iastate.edu/

Software Engineering

http://sdmay20-06.sd.ece.iastate.edu/

Overview
• Windows Application written in C#
• Software product for parsing and analyzing

ARINC 429 data
• Interactive graphs to analyze data
• Export data into multiple formats

Software Engineering

Problem Statement
• To create a program to parse a .csv log file from

the center cluster of a C-130 Airplane and show
the data in a user-friendly format.

Software Engineering

Conceptual Sketch

Software Engineering

Functional Requirements
• Windows compatible executable file
• No internet connection necessary
• Capability to create user defined graphs, charts, and tables
• Convert the ASCII data into ARINC-429
• Parse the input file into selectable data fields
• Report anomalies and provide quick access to

visualizations
• Export parsed data to either .csv or .xls
• Allow playback of trend data once imported

Software Engineering

Non-Functional Requirements
• Parsing needs to run quickly, with a worst case of 10 minutes
• Accept any .csv and .xls files as input
• Recognize if the .csv input file is valid and provide a notification

on failure
• Provide data field names for predefined data as per import data
• Capability for user defined data field names
• Allow filtering what’s included in the data set export
• Playback sequences the data points at 1 Hz update rate
• Allow a graphical depiction of the EIDS dials during playback

Software Engineering

• Runtime - Quickly parse data
• Implementation

• Windows - No other port planned
• Dynamic parsing capabilities

Technical Considerations

Software Engineering

What Makes This Project Unique?
• Existing Collins Product:

• MATLAB - Takes hours to parse data files
• Not used because of runtime

• Our Product:
• C# - Built from bottom-up
• Efficient runtime
• Graphing capabilities

Software Engineering

Risks and Mitigation
• Feature Creep

• Timeboxing
• Prioritization of Requirements

• Inaccurate Data Specification
• No Test Oracle

Software Engineering

Cost Estimate
• No Budget, but Time is Money
• Create data parser in 1 semester
• Create front end component in 1 semester

• Agile development practices – will keep adding
features through entire semester

Software Engineering

Project Milestones
• Parser Prototype (Nov ‘19)
• LiveCharts Implementation (Feb ‘20)
• WPF Application (Mar ‘20)
• Data Parser (Mar ‘20)
• Data Exporter (Apr ‘20)
• Integration (Apr ‘20)

Software Engineering

Design

Software Engineering

• Architecture:
Model View Viewmodel

Functional Decomposition

Software Engineering

Technology Platforms Used
• Language - C#
• .NET Framework 4.7.2
• Library - LiveCharts for graphing UI
• WPF - Platform for Windows Desktop apps
• IDE - Visual Studio

Software Engineering

Test Plan
• Test-as-you-go strategy
• Regression testing on new features
• Sections:

• GUI data-handling and UI
• Parsing capability
• Exporting functions
• Example data with LiveCharts

Software Engineering

Prototype Implementation
• Data Parser from spec
• Data Exporter to selected format
• WPF Application
• Interactive Graphing

Software Engineering

Engineering Standards & Design Practices
• IEEE 1008-1987 Standard for Software Unit Testing
• Principle of Least Surprise/Astonishment

• Naming conventions, WorkFlow.
• Principle of Least Knowledge

• Modularity & minimizing dependencies

Software Engineering

https://ieeexplore.ieee.org/document/27763

Team Contributions
Zak: Communication Lead
Will: Meeting Facilitator
Thomas: UI/UX Architect
Ryan: Quality Assurance engineer
John: Scrum master
Jamie: Tech Owner

Software Engineering

Future Prospects
• Extend exporting capabilities
• Create User Guide
• Hand-off source code & executable

Software Engineering

