IOWA STATE UNIVERSITY Software Engineering

Engine Data Analysis Tool

sdmay20-06

Zachary Frisvold, Will Sartin, Thomas Haddy, John Powen, Ryan Radomski, Jamie Raught

Team Site: <u>http://sdmay20-06.sd.ece.iastate.edu/</u>

Overview

- Windows Application written in C#
- Software product for parsing and analyzing ARINC 429 data
 - Interactive graphs to analyze data
 - Export data into multiple formats

Problem Statement

• To create a program to parse a .csv log file from the center cluster of a C-130 Airplane and show the data in a user-friendly format.

IOWA STATE UNIVERSITY

Conceptual Sketch

IOWA STATE UNIVERSITY

Functional Requirements

- Windows compatible executable file
- No internet connection necessary
- Capability to create user defined graphs, charts, and tables
- Convert the ASCII data into ARINC-429
- Parse the input file into selectable data fields
- Report anomalies and provide quick access to visualizations
- Export parsed data to either .csv or .xls
- Allow playback of trend data once imported

IOWA STATE UNIVERSITY

Non-Functional Requirements

- Parsing needs to run quickly, with a worst case of 10 minutes
- Accept any .csv and .xls files as input
- Recognize if the .csv input file is valid and provide a notification on failure
- Provide data field names for predefined data as per import data
- Capability for user defined data field names
- Allow filtering what's included in the data set export
- Playback sequences the data points at 1 Hz update rate
- Allow a graphical depiction of the EIDS dials during playback

IOWA STATE UNIVERSITY

Technical Considerations

- Runtime Quickly parse data
- Implementation
 - Windows No other port planned
 - Dynamic parsing capabilities

What Makes This Project Unique?

- Existing Collins Product:
 - MATLAB Takes hours to parse data files

- Not used because of runtime
- Our Product:
 - C# Built from bottom-up
 - Efficient runtime
 - Graphing capabilities

Risks and Mitigation

- Feature Creep
 - Timeboxing
 - Prioritization of Requirements
- Inaccurate Data Specification
- No Test Oracle

Cost Estimate

- No Budget, but Time is Money
- Create data parser in 1 semester
- Create front end component in 1 semester
 - Agile development practices will keep adding features through entire semester

Project Milestones

- Parser Prototype (Nov '19)
- LiveCharts Implementation (Feb '20)
- WPF Application (Mar '20)
- Data Parser (Mar '20)
- Data Exporter (Apr '20)
- Integration (Apr '20)

IOWA STATE UNIVERSITY

System Block Diagram

Design

 Architecture: Model View Viewmodel

IOWA STATE UNIVERSITY

Functional Decomposition

IOWA STATE UNIVERSITY

Technology Platforms Used

- Language C#
- .NET Framework 4.7.2
- Library LiveCharts for graphing UI
- WPF Platform for Windows Desktop apps
- IDE Visual Studio

IOWA STATE UNIVERSITY

Test Plan

- Test-as-you-go strategy
- Regression testing on new features
- Sections:
 - GUI data-handling and UI
 - Parsing capability
 - Exporting functions
 - Example data with LiveCharts

Prototype Implementation

- Data Parser from spec
- Data Exporter to selected format
- WPF Application
- Interactive Graphing

ARINC 429 Word Format																															
Ρ	SS	SM	MSB									Data								SI	IC	LSB			Label			MSB			
32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
xm</td <td>lvers</td> <td>sion=</td> <td>"1.0</td> <td>" enc</td> <td>od</td> <td>Tex</td> <td>t Box</td> <td>K To</td> <td>XML</td> <td>Tre</td> <td>e</td> <td></td>	lvers	sion=	"1.0	" enc	od	Tex	t Box	K To	XML	Tre	e																				

engine oil temperature [4]

IOWA STATE UNIVERSITY

Engineering Standards & Design Practices

- IEEE 1008-1987 Standard for Software Unit Testing
- Principle of Least Surprise/Astonishment
 - Naming conventions, WorkFlow.
- Principle of Least Knowledge
 - Modularity & minimizing dependencies

IOWA STATE UNIVERSITY

Team Contributions

Zak: Will: Thomas: Ryan: John: Jamie:

Communication Lead Meeting Facilitator UI/UX Architect Quality Assurance engineer Scrum master Tech Owner

IOWA STATE UNIVERSITY

Future Prospects

- Extend exporting capabilities
- Create User Guide
- Hand-off source code & executable

IOWA STATE UNIVERSITY