
Engine Data Analysis Tool
sdmay20-06

Zachary Frisvold, Will Sartin, Thomas Haddy, John 
Powen, Ryan Radomski

Team Site: http://sdmay20-06.sd.ece.iastate.edu/

Software Engineering



Problem Statement
• To create a program to parse a .csv log file 

from the center cluster of a C-130 Airplane 
and show the data in a user-friendly format.

Software Engineering



Conceptual Sketch

Software Engineering



Functional Requirements
● Windows compatible executable file
● No internet connection necessary
● Capability to create user defined graphs, charts, and tables
● Convert the ASCII data into ARINC-429
● Parse the input file into selectable data fields 
● Report anomalies and provide quick access to visualizations 
● Export parsed data to either .csv or .xls 
● Allow playback of trend data once imported 

Software Engineering



Non-Functional Requirements
● Parsing needs to run quickly, with a worst case of 10 minutes 
● Accept any .csv and .xls files as input
● Recognize if the .csv input file is valid and provide a notification on failure
● Provide data field names for predefined data as per import data
● Capability for user defined data field names
● Allow filtering what’s included in the data set export
● Playback sequences the data points at 1 Hz update rate
● Allow a graphical depiction of the EIDS dials during playback

Software Engineering



• Runtime
• Ported to Windows
• No visible faults
• High test coverage

Technical Considerations

Software Engineering



What Makes This Project Unique?
• Existing Collins Product:

• Takes hours to parse data files
• Not used because of runtime

Software Engineering



Risks and Mitigation
● Feature Creep

○ Timeboxing
○ Prioritization of Requirements

● Wishful Thinking
○ Ninety-Ninety Rule
○ Overestimate, monitoring

● Heroics
○ Accountability

Software Engineering



Cost Estimate
• Create data parser in 1 semester
• Create front end component in 1 semester

• Agile development practices – will keep 
adding features through entire semester

Software Engineering



Project Milestones
• Parse data into data structure
• Show data in user friendly manner
• Allow for user configurable visuals
• Stretch goals

Software Engineering



Design

Software Engineering



Functional Decomposition

Software Engineering



Design

Software Engineering



Technology Platforms Used

• C++ - Parsing Engine data in timely fashion 
• C# - Creating the GUI and charting logic
• WPF - Platform for Windows Desktop apps

Software Engineering



Test Plan
• Automated Test Generation for GUI

• Selenium/Cucumber
• Fuzzy Test

Software Engineering



Prototype Implementations

Software Engineering



Current Status

• Engine Parser prototype complete
• Technology stack for desktop selected
• Requirements documents done
• Design document complete

Software Engineering



Team Contributions
Zak: Communication Lead
Will: Meeting Facilitator
Thomas: UI/UX Architect
Ryan: Quality Assurance engineer
John: Scrum master

Software Engineering



Plan for Next Semester

• Call parser from C#
• GUI
• Base graphing tooling
• Custom graph creation tool

Software Engineering


