IOWA STATE UNIVERSITY Software Engineering

## **Engine Data Analysis Tool**

sdmay20-06

Zachary Frisvold, Will Sartin, Thomas Haddy, John Powen, Ryan Radomski

Team Site: <a href="http://sdmay20-06.sd.ece.iastate.edu/">http://sdmay20-06.sd.ece.iastate.edu/</a>

## **Problem Statement**

• To create a program to parse a .csv log file from the center cluster of a C-130 Airplane and show the data in a user-friendly format.

## **Conceptual Sketch**

#### **Concept Sketch**



**IOWA STATE UNIVERSITY** 

## **Functional Requirements**

- Windows compatible executable file
- No internet connection necessary
- Capability to create user defined graphs, charts, and tables
- Convert the ASCII data into ARINC-429
- Parse the input file into selectable data fields
- Report anomalies and provide quick access to visualizations
- Export parsed data to either .csv or .xls
- Allow playback of trend data once imported



## **Non-Functional Requirements**

- Parsing needs to run quickly, with a worst case of 10 minutes
- Accept any .csv and .xls files as input
- Recognize if the .csv input file is valid and provide a notification on failure
- Provide data field names for predefined data as per import data
- Capability for user defined data field names
- Allow filtering what's included in the data set export
- Playback sequences the data points at 1 Hz update rate
- Allow a graphical depiction of the EIDS dials during playback



## **Technical Considerations**

- Runtime
- Ported to Windows
- No visible faults
- High test coverage



## What Makes This Project Unique?

- Existing Collins Product:
  - Takes hours to parse data files
  - Not used because of runtime



# **Risks and Mitigation**

- Feature Creep
  - Timeboxing
  - Prioritization of Requirements
- Wishful Thinking
  - Ninety-Ninety Rule
  - Overestimate, monitoring
- Heroics
  - Accountability

## **Cost Estimate**

- Create data parser in 1 semester
- Create front end component in 1 semester
  - Agile development practices will keep adding features through entire semester



IOWA STATE UNIVERSITY

## **Project Milestones**

- Parse data into data structure
- Show data in user friendly manner
- Allow for user configurable visuals
- Stretch goals



IOWA STATE UNIVERSITY

## Design

#### System Block Diagram



IOWA STATE UNIVERSITY

### **Functional Decomposition**



**IOWA STATE UNIVERSITY** 

# Design





IOWA STATE UNIVERSITY

## **Technology Platforms Used**

- C++ Parsing Engine data in timely fashion
- C# Creating the GUI and charting logic
- WPF Platform for Windows Desktop apps

## Test Plan

- Automated Test Generation for GUI
  - Selenium/Cucumber
- Fuzzy Test



|    | ARINC 429 Word Format |    |     |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |     |         |    |   |   |      |   |   |     |   |   |   |
|----|-----------------------|----|-----|----|----|----|----|----|----|----|----|------|----|----|----|----|----|----|----|-----|---------|----|---|---|------|---|---|-----|---|---|---|
| Ρ  | S                     | SM | MSB |    |    |    |    |    |    |    |    | Data |    |    |    |    |    |    |    | LSB | SDI LSB |    |   | 3 | Labe |   |   | MSB |   |   |   |
| 32 | 31                    | 30 | 29  | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12  | 11      | 10 | 9 | 8 | 7    | 6 | 5 | 4   | 3 | 2 | 1 |

<?xml version="1.0" encod Text Box To XML Tree

▼ plane [34]

- ▶ power\_on\_counter [1]
- fuel\_quantity\_totalizer [1]
- fuel\_quantity\_outboard [2]
- ▶ fuel\_quantity\_inboard [2]
- ▶ fuel\_quantity\_aux [2]
- fuel\_quantity\_ext\_inboard [2]
- ▼ torque [4]
  - ▶ engine\_1 [1]
  - ▼ engine\_2 [1]
  - ► ARINC\_429\_Word [5]
  - ▶ engine\_3 [1]
  - ▶ engine\_4 [1]
- turbine\_inlet\_temperature [4]
- engine\_oil\_pressure [4]
- engine oil temperature [4]

**IOWA STATE UNIVERSITY** 

## **Current Status**

• Engine Parser prototype complete

- Technology stack for desktop selected
- Requirements documents done
- Design document complete

### **Team Contributions**

Zak: Communication Lead Will: Meeting Facilitator Thomas: UI/UX Architect Ryan: Quality Assurance engineer John: Scrum master

IOWA STATE UNIVERSITY

## Plan for Next Semester

- Call parser from C#
- GUI
- Base graphing tooling
- Custom graph creation tool

